/*
Prob: To divide an array such that the sum of left half and right half is minimum or partition an array in equal halves with minimum sum difference.
A = 1,2,3,4,5,6,7,8,9,10 #Array is not sorted
left=1,4,5,8,9,1 (sum=27) right=2,3,6,7,10(sum=28)
Complexity: O(n^2) Type: GREEDY
*/
public class DivideArray {
int A[];
boolean used[];
int partition[];
int left = 0;
int right = 0;
DivideArray() {
A = null;
used = null;
partition = null;
left = -1;
right = -1;
}
DivideArray(int N) {
A = new int[N];
used = new boolean[N];
partition = new int[N];
left = 0;
right = N - 1;
}
public int findNearest(int A[], boolean used[], int idx) {
int min = 99999999;
int minIndex = -1;
for (int i = 0; i < A.length; i++) {
if (i == idx) {
continue;
}
if (used[i]) {
continue;
}
int diff = Math.abs(A[idx] - A[i]);
if (diff < min) {
min = diff;
minIndex = i;
}
}
return minIndex;
}
public void partitionArr(int A[], boolean used[], int partition[]) {
for (int i = 0; i < A.length; i++) {
if (used[i]) {
continue;
}
int j = findNearest(A, used, i);
used[i] = true;
if (j >= 0) {
used[j] = true;
if (sumLeft(partition, left) <= sumRight(partition, right)) {
partition[left++] = Math.max(A[i], A[j]);
partition[right--] = Math.min(A[i], A[j]);
} else {
partition[left++] = Math.min(A[i], A[j]);
partition[right--] = Math.max(A[i], A[j]);
}
} else {
// if size of array is odd
if (sumLeft(partition, left) <= sumRight(partition, right)) {
partition[left++] = A[i];
} else {
partition[right--] = A[i];
}
}
}
this.partition = partition;
}
public int sumLeft(int par[], int left) {
int sum = 0;
for (int i = 0; i <= left; i++) {
sum += par[i];
}
return sum;
}
public int sumRight(int par[], int right) {
int sum = 0;
for (int i = right; i < par.length; i++) {
sum += par[i];
}
return sum;
}
public static void main(String args[]) {
Scanner sin = new Scanner(System.in);
int N = sin.nextInt();
DivideArray da = new DivideArray(N);
for (int i = 0; i < N; i++) {
da.A[i] = sin.nextInt();
}
// call partition function
da.partitionArr(da.A, da.used, da.partition);
System.out.print("LeftArray: ");
for (int i = 0; i < da.left; i++) {
System.out.print(da.partition[i] + " ");
}
System.out.print("\t(sum=" + da.sumLeft(da.partition, da.left - 1) + ")\nRightArray: ");
for (int i = da.right + 1; i < N; i++) {
System.out.print(da.partition[i] + " ");
}
System.out.println("\t(sum=" + da.sumRight(da.partition, da.right + 1) + ")");
}
}
## Output
10
1 2 3 4 5 6 7 8 9 10
LeftArray: 2 3 6 7 10 (sum=28)
RightArray: 9 8 5 4 1 (sum=27)
9
9
1 2 3 4 5 6 7 8 9
LeftArray: 2 3 6 7 9 (sum=27)
RightArray: 8 5 4 1 (sum=18)
Prob: To divide an array such that the sum of left half and right half is minimum or partition an array in equal halves with minimum sum difference.
A = 1,2,3,4,5,6,7,8,9,10 #Array is not sorted
left=1,4,5,8,9,1 (sum=27) right=2,3,6,7,10(sum=28)
Complexity: O(n^2) Type: GREEDY
*/
public class DivideArray {
int A[];
boolean used[];
int partition[];
int left = 0;
int right = 0;
DivideArray() {
A = null;
used = null;
partition = null;
left = -1;
right = -1;
}
DivideArray(int N) {
A = new int[N];
used = new boolean[N];
partition = new int[N];
left = 0;
right = N - 1;
}
public int findNearest(int A[], boolean used[], int idx) {
int min = 99999999;
int minIndex = -1;
for (int i = 0; i < A.length; i++) {
if (i == idx) {
continue;
}
if (used[i]) {
continue;
}
int diff = Math.abs(A[idx] - A[i]);
if (diff < min) {
min = diff;
minIndex = i;
}
}
return minIndex;
}
public void partitionArr(int A[], boolean used[], int partition[]) {
for (int i = 0; i < A.length; i++) {
if (used[i]) {
continue;
}
int j = findNearest(A, used, i);
used[i] = true;
if (j >= 0) {
used[j] = true;
if (sumLeft(partition, left) <= sumRight(partition, right)) {
partition[left++] = Math.max(A[i], A[j]);
partition[right--] = Math.min(A[i], A[j]);
} else {
partition[left++] = Math.min(A[i], A[j]);
partition[right--] = Math.max(A[i], A[j]);
}
} else {
// if size of array is odd
if (sumLeft(partition, left) <= sumRight(partition, right)) {
partition[left++] = A[i];
} else {
partition[right--] = A[i];
}
}
}
this.partition = partition;
}
public int sumLeft(int par[], int left) {
int sum = 0;
for (int i = 0; i <= left; i++) {
sum += par[i];
}
return sum;
}
public int sumRight(int par[], int right) {
int sum = 0;
for (int i = right; i < par.length; i++) {
sum += par[i];
}
return sum;
}
public static void main(String args[]) {
Scanner sin = new Scanner(System.in);
int N = sin.nextInt();
DivideArray da = new DivideArray(N);
for (int i = 0; i < N; i++) {
da.A[i] = sin.nextInt();
}
// call partition function
da.partitionArr(da.A, da.used, da.partition);
System.out.print("LeftArray: ");
for (int i = 0; i < da.left; i++) {
System.out.print(da.partition[i] + " ");
}
System.out.print("\t(sum=" + da.sumLeft(da.partition, da.left - 1) + ")\nRightArray: ");
for (int i = da.right + 1; i < N; i++) {
System.out.print(da.partition[i] + " ");
}
System.out.println("\t(sum=" + da.sumRight(da.partition, da.right + 1) + ")");
}
}
## Output
10
1 2 3 4 5 6 7 8 9 10
LeftArray: 2 3 6 7 10 (sum=28)
RightArray: 9 8 5 4 1 (sum=27)
9
9
1 2 3 4 5 6 7 8 9
LeftArray: 2 3 6 7 9 (sum=27)
RightArray: 8 5 4 1 (sum=18)
No comments:
Post a Comment